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ABSTRACT
Let £ be a set of n x n complex matrices A which satisfy the
s -1 a+1
condition (I - zA) I < K/(1 - |z]) for some a » 0 and all [zf| < 1.

Then it is shown here that there exists a constant p(a,n) such that

v a .
A"t € Xp{a,n)v , v=20,1,,.., . This forms a generalization of the Kreiss

resolvent condition (a = 0).
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SIGNIFICANCE AND EXPLANATION
Let A be an n x n complex valued matrix. A standard and useful

result in matrix theory claims that all powers of A are bounded if and only
if the spectral radius~p(A) - is less or equal to one and for all eigenvalueg

A of A such that }A] = 1 the matrix (I - zA)~' has a simple pole at

z = . If we consider a more general problem, namely when the powers A,

v=20,1,..., grow at most as va, where a 1is a positive integer, then
this condition holds if and only if p(A) < 1, and for all eigenvalues X
of A such that |A|l = 1 the matrix (I - zl’&)'1 has at most a pole of order

a+ 1 at z = .

"—~,1In the early sixties H. O. Kreiss, while studying stability of numerical
schemes for partial differential equations, considered a generalization of -the
fi%:i problem, described above. Namely, g1ven aset 4 of n xn complex

LoV
valued matrices, when all powers of A*{ 2 are uniformly bounded. These sets

- called the stable sets - were completely characterized by Kreiss by giving

three equivalent conditions. LR I B S

Yoo

In this paper iziconsxder a-stable sets A(& 2 0), such that for any

SIS 2O RV AT T C
rorrt "’k“\)ﬁ we general'i'.\z: th;\?»\a\’ T)w

A ¢'4A the powers -AY are uniformly bounded by
'\\\\'\L

G

Kreiss resolvent condition for’ﬁ-stable sets. It seems that*Y-stable sets

are related to the concept of weakly stable numerical schemes for partial

differential equations.
\
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and nnt with the author of this report.
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A GENERALIZATION OF THE KREISS MATRIX THEOREM

Shmuel Friedland

1. Introduction
In various instances one deals with iterative systems of equations
(1.1) xIF1) = gl 1=0,1,2,.00 4
Here x(i) ec, Ace My, where C" is the set of n column complex vectors and My is
the set of n x n complex matrices. Clearly
(1.2 x(1) = alx(0)
and thus in order to investigate the behaviour of x(i) for large i one needs to studv
the powers Ai, i=0,1,+.0o+ Let A be a set of n x n matrices. 4 is called
an a-stable set if
(1.3) s < xv®, VE0,1,2,00 .
Here o is a nonnegative number and sl is a norm on Mp. The concept of stability of
the numerical schemes for solutions of partial differential eguations is intimately

connected with the notion of stable sets. Consult for example Kreiss [1962], Richtmyer and

Morton [1967] and others. It seems that a-stable sets are related to the concept of weakly

stable numerical schemes for partial differential equations. See Kreiss [1962] and Forsyth
and Wasow [1960]). The stable sets were characterized completely by Kreiss [1962]. In this
paper we generalize the Kreiss result to a-stable sets.

"

Theorem 1. Let o be a nonnegative number and 4 be a set of n x n complex valued

matrices. Then the following two conditions are equivalent.

(A) There exists a constant K(» 1) such that for all A€ 4 (1.3) holds.

(R) There exists a constant K{> 1) such that for all A€ 4

'(a¢1)' 1zl <1 .

-~1
(1.4) I = zA) 1 S K(1 - |z])
The implication (A) ==> (R) is obvious, The implication (R) ==> (A} is a consequence

nf Theorem 2 which estimates the Maclaurin coefficients of a certain family of rational

Spongored by the United States Army under Contract No. DAAG29-80-C=-0041,




functions in terms of the growth of their moduli.

analogous to the conditions (8) and (H)

We were not able to give conditions

of Kreiss.

2. Coefficient Estimates for Certain Analytic Functions

Let D be a unit disc )zl < 1, Suppose that

Consider the Maclaurin expansion of f

|z}

f(z)

< 1.

3 =0,1,2,...

o
(2.1 flz) = | az’,
v=0 v
Suppose that
(2.2) la | < w©,
v

for a > -1, It is a standard result in theory of special functions (e.g. Olver [1974,

1191) that

(2.3) Vs eVt

v

Here two positive sequences {um} and (v

My

/T T{v + Nl(a + 1)

u
lim -2 = 8,
v
m-oe m
Thus (2.3) implies
(2.4) l€¢z)] € Kpla)(t -

for some positive constant (1) with 2> ~1. C(Conversely we have a weaker result.

T{a + v + 1)

1z 1)

Lemma 1, ILet f(2) be analytic in D, Assume that

(2.5 PE(2) ] < k(1= 12T,
for some  a > N and all  Jz| < 1, Then

(xU J#Q-a a
(2,61 la s ¥ 1 6= = (xe(v + 1)

\ * A

and this inequality 18 sharp.

Pronf. hs

2.7 [ R B

f2l=r1

flr)z

} are called equivalent

D <CB <>,

-(a+1)

-(v+1)dz

Yn 7 Vm

is an analytic function in

if

D.

g




- ey

—— - —— -

we get

(2.8)

Note that

This establishes the first inequality in (2.6).
choose in (2.8)

{(2.6) is sharp for each v

(2.9)

Let B be a Banach space with a norm el

operator.

(1 - zm)™"

(2.10)

we get

(2.11)

Thus if

(2,12)

0<r<1

Suppose that the spectrum of

in power series

aae S—

Iavl < [ max If(z)I]r-X CK(1~ ) %Y,

lz|=r

min (1 =) %V = (1 - ) %Y

V+3a

To obtain the second inequality in (2.6)
v

r = : 0 and use the well known fact that (1 + %] < e. To see that
consider the polynomial :
|
i
a\V v+ v !
p(z) = K(1 * 5 (—-u——] z . =]
Assume that A : B * B 4is a bounded linear

A lies in the unit disc. Then expanding

1 o
(1 -za)" ' = T 2"AY
v=0
A= 27t (1 - z8) " laz .
|z |=r<1
I - zm) "1 < k(1 - 1279, 1zt < 1

applying the results of Lemma 1 we obtain

(2.13)

1A”1 < ke(v + 1%,

It is an open problem whether the estimate ({2.13) is sharp in some infinite

dimensinnal Banach space.

(2,13) for matrices (j,e., 8

The following result enables one to improve the inequality

is finite dimensional},
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Theorem 2 Consider all polynomials pl(z) and glz) of degrees m and n respectively

iuch rhat the ‘unction flz) = plz)/q(2) satisfies (2.5). Suppose that a > V. Then

there exists a positive constant pfa,m,n) such that ¢
-1
(2.14) la 1 < Kola,m,mv'® 1),

Tu prove this theorem we need the following lemma,

Lemma 2. Ilet p(z) be a polynomial of degree m. Then there exists a constant ¥(m)

such that

2.15) max Ip(z)] € K(m)( max Ip(relo)l) .
lzl=r 18]<n/4

Proof. It is enough to consider the case r = 1 with p(z) of the form

m

= - < ses ¢ .
p(z) 1=: tz = 2., lc‘l lczl lcml

For m = 1 it suffices to choogse K{(1) = S, Let m > 1, Define

K'(m) = max ( max lIp(z)|/ max lp(ele)l) .
OSig deeeecis 163 (zi= 151<n/4
m=1
In case that l;ml >3 let qlz) =TT (2 - Cj). Then
i=1

max |p(z)} « (Igml + 1) max lq(z))
{zl=1 fz)=1

. 2(|;ml-1)K(m - 1) max |q(eie)l € 2K(m = 1) max Ip(eij
lel1<n/4 |6l<n/a

Put
K(m) = max(X'(m), 2K(m = 1))

and the lemma follows. a

Proof of Theorem 1. Without restriction in generality we may assume that pl2) and

12} An nnt have common zeros. Also it is enough to consider the case XK = 1, The

inequalisy (2.5) {mplies that we can choose q and p of the form




2 m=2 n
(2.16) plz) = 2z AT T (1 =2zw), qlz) =TT (1 =-25,) .
iw1 i i=1 i

The inequality (2.5) yields 1(§,| € 1, i1 = 1,,..,n. Put
i

m~£ n
(2.17) glz) =aTT (2 - w/TT (2 - ) .
i=1 i=1
(2.18) letz)] < 121" ™%zl = 1% 1zl > 1.
Also
s +
(2.19) glz) = § az VP ™ 1z > 1.
v=(
Note that
a, - (2w1)-1 f q(z)zlv+n_m~1)dz .

fz]=R>1

Let Dg,...,D, be p-mutually disjoint, open and bounded domains with the boundary

p
P
T1,...,Tp respectively. Assume that ;i € %:% Dj' i=1,...,n. Then we obtain
(2.20) a = b o2 [ gV,
v
3=1 y

3

To obtain the estimate (2.14) we are going to choose the domains D1,...,Dp according to

the configuration of c1,...,cn and the value of v. First we group the points

51""’55 following Morton [1964]. Let 511 be one of the points with the largest

modulus, lci1| = 1 - 61 1 Icil, i=1,...,n. Then we form S, from all those points

which can be joined to Ci, by a chain of points, each link of which has lenath <« 51.
In the same way S, 1is formed from the remaining points, and so on until all the

points have been included in some SB' For each sB we denote by 1 - de and 1t - ¢,

the modulus of the largest and the smallest Icll, g, € 58' We rename Gyrevssl, SO that
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e W e wy

e —
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(2.21) 0 € §, € o000 ¢ §
1 3

Consider any particular S, and let us denote its members by Xi, i =1,2,...,k, where

1 - ¢ I\il €1 =3, 4i=1,...,ke Let us also denote the points not in s8 by uj,

3 =1,2,¢0.,n = kX, We claim

(2,22) .8 1t =y} < k8, 1A, = x| < (xk - 15, A, = u.l >8 .
3 i 3 i 3j 8 i 3j 8

Indeed, the first two inequalities follow immediately from the assumption that there exists
a chain of at most k points between Ai and Aj such that the distance of any link

< 55. The last inequality is a consequence of uj not being in SB. Let

m-£

(2.23) hiz) = A (z - wi) .

o
i=1

For A,_ € SB put

t
. = § )X .

(2.24) " (1 + 2 3) t/l)\t|

Then
m=£ .

(2.25) nz) = T h(z-m’,
=0’

We now estimate hj. Let I be a circle |z - n} = 68. Then
-z - - < - + - + -z
lz ’i‘ < |z th + IXt Cil lz = nl In Xt! IXC sil

=S e 25, - AL e IR - S ke 8+ A - o)

>4

where the last inequality follows from (2.22). 1In particular
lz =~ Al < 2(k + 16,
3 g

in view of (2.22). Apply the Cauchy formula for hj and use (2.18) to get

-6-

- -




: . n
thyt = @07 1] n@rdze-n TV ¢ GO TT (0eai6g + 13-t 1)

r i=1

(2.26) e
< {20k + 1)) Kg™EETOIYOR T L ays, + 1A - ()

8 8 e "M
i=1
n-k
n m+a={jta)+k T .
< [2(k + 2)17°4 68 [ IAt uil .

i=1

We now consider the following three cases

(i) 8, > 1/(2™2qy)

(i1) 68 < 1/(4nv) ,
(1ii) neither (i) nor (ii) holds.
Here Vv 1is a positive integer and Vv > m - n + a.

Case (i). Let C; be a disc |z - cil < 63/2, for ;i € S_. Then

n p
.27 D = = D
(2.27) c4 L_) 5
i=1 3=1
where each Dj contains a subset of some sB and Dj il Dk =¢ for j #* k. Let Fj be
the boundary of Dj' Then E(Fj) - the length of Fj - satisfies the inequality
(2.28) £2(T.) € 2m(D_)§, ,
3 i 8

where n(Dj) is the number of points Cl""’cn in Dj. Let z € Tj. Clearly

z=A_+0, lpl = 68/2, Sg = {xl,...,xk}. By the definition of D

t LK

1< 3 € k. Also

1
- = A - w4+ > | - -5 /25 = - .
lz ujl ! ¢ ”3 ol | ¢ ujl 8/ 5 Ikt W
Thus
n n-k
12.29) TTz~cHr e *TTm -ui™".
i=1 i 8 j=1 t 3j

Also for n of the form (2.24) we have

lz - le > 66/2 for




S e

§
8 .
- < - - — -
lz =nl <z =21+ A =nl C5=+ 1+ 28, = Il < (x + 316,

Tombine (2.25)-(2.26) with the above equality to deduce

n
(24365 ih(z)] <€ [2(k + 2)]n+mm 4m+06: Rl f ‘Xt -u

|
f=1 i

Finally we deduce

(2.313 1g(z) | < (16(n + 2)]“*”*“65“ .

Using the equality (...20) and the inequalities (2.28), (2.31) for Vv > m - n we get

{(v¥m-n=-1) ~a+1

Jaz) < nf16(n + 23 ™% min 5
1<8<sg

oyl < 5 o@n™ ) dstaa
3=1 T

< nu[16(n . 2,]n+m+a2(n+2)(a-1)va-1

as @ 2 1. Thus we have shown (2.14) (X = 1),
Gase (ii). Let C; be an oper disc with center at Ci/JCiJ and radius 1/2v. Form

by (2.27). Assume that =z ¢ rj. So

= L
(2.32) z ;i/\cil +o, ol = oo
We now estimate
4 ;
K(D) = max |02, T = {z,z = w27 0+ o', qst < 3.
zeT Ci

According to (2.18)

_n_

K(I) < e(4v)*[max |

Iz - g 11,
zel t=1 t

3
for v 2 m - n 4 a. Let ni = {1 + EU);i/};i). Clearly n € Pj. We claim that for

z €l or z of the form (2.32) which is in T we have

3

i t

B € |z ~ Ctl < 3lni -5l .

t

Indeed it is easy to see that for such 2z the following inequalities hold




So

Therefore

n

a —

KM <« e37(av)

(U B

[
t=1

Let z = Ci/lci! +p € Fj, Ipl = . Then by Lemma 2 and the above inequalities

latz) | < 5£51515—1—£l < Rim ~ 0 (15 4w %
[T 1z -zt
t=1 t
and
+m-n— 1 vem-n-1 : a2
lg(z)z” ™™ < kim = (15 (an) Fe(1 + 33)"” T km - D157 4w e

for v »m - n + a. As the lenath of the boundary of D “oues not exceed ™n/v fror

(2.20) we get

[ < Kim - One15) %20

a
' v
Case (iii). 1In this case we claim that there exists 1 < % < s such that

(2.33) 6s+1 >+ max .. P . I GO R
2™ %un 0<yes

and

1
(2.34) GY““‘ >—;,’—'—+ max €. .,
2" un ocicy ?

ntherwise either (i) or (ii) hold. (Note the ineguality 2.21). Put

1
12.35) ros o max ) 4~
- 2 vn

098y




It is not Aifficult to show that r < %3. Let Ci € SB' For g <« y denote by Ci a disc
with center at ;i/l;il and radjus r. For 8 >y let C; be a disc with center at N

and radius 53/2. As before define D by (2.27). Now estimate a, from the equality

(2.20) using the arguments of the Cases (i) and (ii) in accordance with 8 > y or £ < y

to deduce (2,14). This concludes the proof of Theorem 2. 2

Remark 1. A special case of Theorem 2, namely a =1 and m=n - 1 was established in

Morton {1964).

Proof of Theorem 1.

(A) ==> (R). Follows immediately from (2.3).
-1 n
(R) ==> (A). Let (I =~ zA) = (fij(Z))1'
Then fij(z) = pii(Z)/qij(z" where the degrees of Pj 5 and qij are n -1 and n

respectively. Now (1.3) follows from Theorem 2.
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